

Diagnosis of the Dynamics within an Organisation by
Trace Checking of Behavioural Requirements

Catholijn Jonker

Vrije Universiteit Amsterdam
Department of Artificial Intelligence

De Boelelaan 1081a
1081 HV Amsterdam The Netherlands

Tel. +31 20 444 7743
jonker@cs.vu.nl

Ioan Alfred Letia
Technical University

Department of Computer Science
Baritiu 28

RO-3400 Cluj-Napoca Romenia
letia@cs-gw.utcluj.ro

Jan Treur
Vrije Universiteit Amsterdam

Department of Artificial Intelligence
De Boelelaan 1081a

1081 HV Amsterdam The Netherlands
Tel. +31 20 444 7763

treur@cs.vu.nl

Abstract

The main question addressed in this paper is how requirements on the
dynamics of an organisation model can be specified and how the
dynamics of such an organisation can be formally analysed. A
specification language is proposed, and a number of different types of
requirements for dynamics at different levels in the organisation are
identified. Based on a logical analysis and a software environment to
check requirements against traces of the dynamics, a diagnostic method is
proposed to analyse the malfunctioning of an organisation, and pinpoint
causes of malfunctioning.

1. INTRODUCTION
Organisation modelling aims at abstracting from agents and their
interaction within a complex multi-agent system using notions
such as role, interaction and group structure (cf. [8], [9]). The
notion of role, for example, is independent of any particular agent
fulfilling this role. Role interactions define the relationships
between roles. A group structure is a set of roles and interactions
between them. The advantage of organisation modelling is to deal
more adequately with complexity, in particular for multi-agent
systems with nontrivial global behaviour.

In recent years Requirements Engineering for distributed and
agent systems has been studied in more depth, e.g., [3], [4], [11],
[15]. At the level of the multi-agent system, requirements concern
the dynamics of interaction and cooperation patterns. At the level
of individual agents, requirements concern agent behaviour. Due
to the dynamic complexity, specification and analysis of such
requirements is a difficult process. The importance of using more
abstract and intuitive notions in requirements specification, as
opposed to more directly formulated behaviour constraints, is
emphasised in, e.g., [3]. Below organisational concepts are used
to serve this purpose. Because of their intuitive meaning and
conciseness, such notions are easy to understand.

For description of multi-agent systems from the organisational
point of view, the agent/group/role model, adopted from [8] is
used. An organisation is based on a definition of groups, roles and
their relationships within the organisation. In relation to an
organisation model four different types of requirements are
distinguished (Section 2), varying from global requirements for
the organisation as a whole, to requirements for specific roles and
for interactions between them. Section 3 briefly describes the
example application used in the paper: a (simulated) organisation
model for work flow related to a Call Center and a bank. In
Section 4 a temporal trace language to formally specify

behavioural requirements is briefly introduced. Using this
language, in Section 5 a number of requirement specifications for
the example organisation are presented.

For all different types of requirements discussed in this paper, for
a given set of finite traces representing dynamics within the
organisation, the requirements can be verified automatically. By
specifying the refinement of a global requirement for the overall
organisation in terms of more local requirements, in Section 6 it is
discussed how it is possible to perform diagnosis of
malfunctioning of the organisation. If the overall requirement fails
on a given trace, then subsequently, all refined requirements for
the parts of the organisation can be verified against that trace: the
cause of the malfunctioning can be attributed to the part(s) of the
organisation for which the refined requirement(s) fail(s). This
diagnostic method is applicable both to data on the dynamics of
simulated organisations and empirical data on the dynamics of
real organisations. Section 7 is a discussion.

2. TYPES OF REQUIREMENTS
Based on an organisational structure, the following types of
requirements are distinguished: single role behaviour
requirements, intragroup interaction requirements, intragroup
communication successfulness requirements, intergroup
interaction requirements. To be able to specify ongoing
interaction between two roles for which multiple appearances
exist, the notion of role instance is used. This notion abstracts
from the agent realising the role as actor, but enables to
distinguish between appearances of roles.

For a given role within a group, role behaviour requirements
specify the dynamics of the role within the group. They are
typically expressed in terms of temporal relationships between the
input and output of a role instance. Intragroup role interaction
requirements specify the temporal constraints on the dynamics of
the interaction protocol between two roles within a group.
Intragroup role interaction requirements between two roles
instances in one group instance are typically expressed in terms of
the output of both role instances. Intragroup role interaction
requires communication within the group. Therefore, in order to
function properly, requirements are needed that communications
are successful. These requirements relate output of one role
instance to input of another role instance in the same group.

Intergroup role interaction requirements specify the temporal
constraints on the dynamics of the interaction protocol between
two role instances within two different group instances. They are

typically expressed in terms of the input of one of the role
instances in one group instance and the output of the other role
instance in the other group instance.

3. THE EXAMPLE ORGANISATION MODEL
The example organisation model was inspired by the application
addressed in [1]. The organisation consists of a Call Center
together with a (large) number of local banks. For simulating this
organisation and visualizing the experiments Swarm1, an agent-
based simulator [18], was used. A basic agent model has been
developed with the core functionality required for the
organisation; see Figure 1 for an overview. This agent model has
then been specialized in a bank employee (BE agent), a bank
distributor (BD agent) and the Call Center distributor (CD agent).
The organisational structure of the bank and call center is
hierarchical with communication between Call Center Distributor
(CD) and bank distributors (BDi) and between bank distributors
(BDi) and bank employees (BEij).

Figure 1 Call Center distributor (CD), bank distributors (BDi) and
bank employees (BEij).

In the experiments each local bank had nine employees. The tasks
come from the Clients to the Call Center Distributor. The Call
Center Distributor allocates the tasks for the three banks
according to its policy and the three queues below are the ones
sent to the Bank Distributors. The same procedure is repeated by
the Bank Distributor for the Bank Employees that have to process
the tasks.

Figure 2 Task probe

A task within this organisation (shown as UTask in Figure 2) has
an identifier (taskId), number of time units needed for its
processing (taskUnits) and a relative time (relTime) specifying the
time moment when the task has been promised to be processed.
We can vary the policy used by distributors in the allocation of
tasks for their subordinates. The availability of employees can
also be varied with some degree of absenteeism. The distributors

1 Swarm home page http://www.santafe.edu/projects/swarm/

can all use the same policy for scheduling the tasks to their
subordinates or can use different policies. The kind of exceptions
that can be currently injected in the dynamics of the organisation
are: (i) agent unavailable, (ii) task misrouted, and (iii) task
delayed [6]. Currently the communication of tasks can be logged
in both directions, to subordinates and to superiors. When the
employees finish processing a task, they communicate it at the
end of that particular time interval to their superior and from there
it is communicated to the center distributor, also at the end of the
same time interval. There is no time lag between accepting a task
and its being sent to the bank which should process it, and
similarly for acknowledging its finish back to the center
distributor.

For tracing the communication of tasks between the Call Center
Distributor and the Bank Distributors we have log files for the
input and output of each of the role instances. These log files are
used to generate the traces that are analysed by the checking
software.

By testing for various situations, the designer of the multi-agent
system can thoroughly check the requirements for interactions
[17], actually see how well the organisation is able to manage
exceptions that can occur during the enactment of a process [6],
and uncover agents that do not comply with coordination
protocols [19]. Unreliable coordination between agents and the
effect of various decisionmaking policies on the behavior of the
organisation as a whole is done by creating specific circumstances
(e.g., exceptions) and observing behavior of the organisation
under these circumstances. The tools presented in this paper
provide support for such an analysis.

4. A TEMPORAL TRACE LANGUAGE
To specify requirements on the dynamics within the organisation,
the temporal trace language used in [11], [12] is adopted. An
ontology is a specification (in order-sorted logic) of a
vocabulary, i.e., a signature. A state for ontology Ont is an
assignment of truth values {true, false} to the set of ground atoms
At(Ont). The set of all possible states for ontology Ont is denoted
by STATES(Ont). The standard satisfaction relation |= between
states and state properties is used: S |= p means that property p
holds in state S. To describe behaviour, explicit reference is
made to time in a formal manner.

A fixed time frame T is assumed which is linearly ordered.
Depending on the application, it may be dense (e.g., the real
numbers), or discrete (e.g., the set of integers or natural numbers
or a finite initial segment of the natural numbers), or any other
form, as long as it has a linear ordering.

A trace � over an ontology Ont and time frame T is a mapping
� : T → STATES(Ont), i.e, a sequence of states �

 t (t ∈ T) in
STATES(Ont). The set of all traces over ontology Ont is denoted by

TRACES(Ont) , i.e., TRACES(Ont) = STATES(Ont)T.

Comparable to the approach in situation calculus, the sorted
predicate logic temporal trace language TTL is built on atoms
referring to, e.g., traces, time and state properties, such as
state(

� , t, output) |= p. Here |= is a predicate symbol in the
language, comparable to the Holds-predicate in situation calculus.
Temporal formulae are built using the usual logical connectives
and quantification (for example, over traces, time and state
properties). The set TFOR(Ont) is the set of all temporal formulae
that only make use of ontology Ont. We allow additional language

BD2 BD0

BD1

CD

BE00 BE01 BE20 BE21

BE10 BE11

elements as abbreviations of formulae of the temporal trace
language.

States of a trace can be related to state properties via the formally
defined satisfaction relation |= between states and formulae. If ϕ
∈ SPROP(InOnt), then state(

�
, t, input) |= ϕ denotes that ϕ is true in

the state of � at time point t.

Ontologies can be specific for a role. In Section 5, for simplicity
explicit reference to the specific ontologies per role are omitted;
the ontology elements used can be read from the requirements
themselves.

5. EXAMPLE REQUIREMENTS
In this section behavioural requirements related to the example
are fomalised using the temporal trace language introduced in
Section 4. Within these requirements specifications universal and
existential quantification over role instances can occur. Role
instances are denoted by I:R where R is a role. To be able to
specify requirements for the example organisation, first the
following terms are introduced. The organisation model used for
the bank and Call Center consists of two groups: DISTRIBUTION,
OPEN_GROUP. For the group OPEN_GROUP only one instance
exists, open_group, standing for the Call Center. For the group
DISTRIBUTION the following instances exist, cc, lb1, …, lbn, standing
for the cooperation between Call Center and local bank managers
(cc), and for each of the local banks and their employees (lbi).
Within the group DISTRIBUTION two roles exist: DISTRIBUTOR,
PARTICIPANT. For these roles the following instances are
distinguished: d: cc (distributor role instance within group
instance cc), pcc1, …, pccn : cc (n participant role instances within
group instance cc), d: lb1 (distributor role instance within group
instance lb1), …, d: lbn, p11: lb1 (first participant role instance of
group instance lb1), …, p1m: lb1 (m-th participant role instance of
group instance lbn), …, pn1: lbn, …, pnm: lbn. Within the group
OPEN_GROUP, the following roles exist: RECEPTIONIST, CLIENT.
Finally, the following role instances are distinguished: cl:

open_group (client role instance within group instance open_group),
and rec: open_group (receptionist role instance within group
instance open_group).

Variable introduction at the beginning of a formula is done as ∀ V:

S, or ∃ V: S, where S is the sort of the variable, and V is the
variable name. Introducing several variables of the same sort can
be done like: ∀ V1, V2, …, Vn: S. Variables used in the article are:

• GI: GROUP is a variable ranging over all possible group
instances of group GROUP. Examples: GI: DISTRIBUTION, GI:

OPEN_GROUP.

• RI: ROLE: gi is a variable ranging over all possible role
instances of role ROLE within group instance gi. Examples: P:

PARTICIPANT: cc, P: PARTICIPANT: GI: DISTRIBUTION.

• t: T is a variable ranging over time.

• � : TRACES is a variable ranging over traces.

• id : TaskId is a variable ranging over task identifiers.

When used within a formula, with the exception of the
introduction of the variable, only the variable name of the variable
is used. Example:

 ∀ � : TRACES, ∀ t : T nr_of_finished(
�

 , t, t) = 0

It is assumed that job names are unique. One job is presented to
the organisation at a time.

The requirements are specified below in a form that is specific for
the application. However, it is not difficult to reuse them over
different applications of the same type of organisation.

5.1 Global Requirements

At the level of the organisation as a whole the following
requirements can be identified

GR1. Every request is answered (either by rejecting or by
accepting and finishing it)

GR2. No accepted jobs are lost: for every accepted job there is a
time that that job is finished.

GR3. The ratio of accepted jobs over requested jobs is at least r.

GR4. The average delay of jobs is at most m.

These global requirements can be formalised as follows. The first
requirement specifies that at any point in time, if a client
communicates a request to the receptionist, then at some later
time point the receptionist will communicate either a rejection of
the request or a notification that it was finished to that client.

GR1 All requests answered

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,

∀ C: CLIENT:open_group, ∀ R: RECEPTIONIST: open_group

 [state(
�

 , t1, output(C)) |= comm_from_to(requested(tid, tf), C, R)

⇒ ∃ t2 : T [t2 ��� �

 & [state(
�

 , t2, input(C)) |= comm_from_to(rejected(tid), R, C)

 ∨ state(
�

 , t2, input(C)) |= comm_from_to(finished(tid), R, C)]]

The next requirement expresses that if at any point in time the
receptionist communicates to a client that a request was accepted,
then at some later time point the receptionist communicates to the
same client that the task was finished.

GR2 No lost jobs

∀ � : TRACES, ∀ id : TaskId, ∀ t, t1 : T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

[state(
�

 , t1, input(C)) |= comm_from_to(accepted(id, t), R, C)

⇒ ∃ t2 : T [t2 > t1

 & state(
�

 , t2, input(C)) |= comm_from_to(finished(id), R, C)]]

For the next two requirements additional specifications are
needed to define the frequency functions used. For shortness’ sake
these are left out; see, however, the Appendix. The first one, G3,
can be viewed as a liveness property: it indicates that at least a
certain amount of ’good events’ in the sense of request
acceptances must happen.

GR3 Acceptable ratio of accepted jobs over [t1, t2]

∀ � : TRACES

 nr_of_ accepted(
�

 , t1, t2) / nr_of_ requested(
�

 , t1, t2) ≥ r

requirement G4 below can be viewed as a safety requirement: it
indicates that only limited ’bad events’ in the sense of delays can
happen.

GR4 Acceptable average delay of accepted jobs over [t1, t2]

∀ � : TRACES average_delay(
�

 , t1, t2) ≤ m

In the next four subsections the different requirements on parts of
the organisation are identified. In Figure 3 below an overview can
be found. In this figure three group instances are depicted,
together with two role instances in each of them. Requirements of
different types are depicted by arrows. The position from which
an arrow starts indicates the role instance to which the if-part of
the requirement refers. Whether the if-part refers to input or
output is indicated by the start position of the arrow (resp. at the
left hand side of the role instance or at the right hand side). In a
similar manner the end point of an arrow indicates to which role
instance the then-part of the requirement refers. The requirements
distinghuished in Figure 3 and specified in detail below are
selected in order to be able to derive global requirement GR1
from them. In Section 6.1 this will be addressed in more detail.

5.2 Intragroup Role Interaction Requirements

Intragroup role interaction requirements specify the cooperation
within a group. Within each group instance at least one intragroup
role Interaction requirements is specified. The first one specifies
that within the open group proper interaction takes place: if a
client communicates a request, then some time later, either the
request will be rejected, or finished.

IaRI1 Client-Receptionist Intragroup Interaction

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

[state(
�

 , t1, output(C)) |= comm_from_to(requested(tid, tf), C, R)

⇒ ∃ t2 : T [t2 � � �
�

 [state(
�

 , t2, output(R)) |= comm_from_to(rejected(tid), R, C)

 ∨ state(
�

 , t2, output(R)) |= comm_from_to(finished(tid), R, C)]]]

The next requirement expresses that within the distribution groups
proper interaction takes place: if a request is communicated to a
participant (by a distributor), then the participant will respond
(eventually) by rejecting it or having it finished.

IaRI2/IaRI3 Distributor-Participant Intragroup Interaction

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T, ∀ GI: DISTRIBUTION,

∀ D: DISTRIBUTOR: GI: DISTRIBUTION,

∀ P: PARTICIPANT: GI: DISTRIBUTION

[state(
�

 , t1, output(D)) |= comm_from_to(requested(tid,tf), D, P)

⇒ ∃ t2 : T [t2 � � �
�

 [state(
�

 , t2, output(P)) |= comm_from_to(rejected(tid), P, D)

 ∨ state(
�

 , t2, output(P)) |= comm_from_to(finished(tid), P, D)]]]

5.3 Intergroup Role Interaction Requirements

Intergroup role interaction requirements specify connectivity
between the groups. This is achieved by an association between a
role instance of one group and a role instance in another group,
specified by the relation intergroup_role_relation(R, D). The first
intergroup role interaction requirement specifies that an
intergroup role relation between role instances of RECEPTIONIST
and DISTRIBUTOR in open_group and cc exists, and, in particular
that every request received by the role instance of RECEPTIONIST
within open_group leads to a similar request of the role instance
DISTRIBUTOR within cc.

IrRI1 Receptionist-Distributor Intergroup Interaction

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,

∀ R: RECEPTIONIST: open_group, ∀ C: CLIENT: open_group,

∀ D: DISTRIBUTOR: cc, ∀ P: PARTICIPANT: cc

 [[intergroup_role_relation(R, D)

 & state(
�

 , t1, input(R)) |= comm_from_to(requested(tid, tf), C, R)]

⇒ ∃ t2 : T [t2 � � �

 & state(
�

 , t2, output(D)) |= comm_from_to(requested(tid, tf), D, P)]]

The next intergroup role interaction requirement specifies that
also the return path from group instance cc to group instance
open_group is guaranteed. This is achieved by an intergroup role
relation from the distributor instance to the receptionist instance.
The explanation of this requirement is as follows. If within the
distribution group instance cc the distributor role instance gets
information communicated by a participant, then within the open
group instance the related receptionist role instance will
communicate this information to the client. In this requirement
(and other requirements) info ranges over { finished(tid), rejected(tid),

accepted(tid) }.

IrRI2 Distributor-Receptionist Intergroup Interaction

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,

∀ D: DISTRIBUTOR: cc, ∀ P: PARTICIPANT: cc,

∀ R: RECEPTIONIST: open_group, ∀ C: CLIENT: open_group

[[state(
�

 , t1, input(D)) |= comm_from_to(info, P, D)

 & intergroup_role_relation(D, R)]

⇒ ∃ t2 : T

 [t2 � � �
���
� � � ��� �

 , t2, output(R)) |= comm_from_to(info, R, C)]]

Similarly intergroup relations between the local bank group
instances and the distributor group instance cc are specified:

IrRI3 Participant-Distributor Intergroup Interaction

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,

∀ D1: DISTRIBUTOR: cc, ∀ P1: PARTICIPANT: cc,

∀ GI: DISTRIBUTION, ∀ D2: DISTRIBUTOR: GI: DISTRIBUTION,

∀ P1: PARTICIPANT: GI: DISTRIBUTION,

[[state(
�

 , t1, input(P1)) |= comm_from_to(requested(tid, tf), D1, P1)

 & intergroup_role_relation(P1, D2)]

⇒ ∃ t2 : T [t2 ��� �

 & state(
�

 ,t2,output(D2)) |= comm_from_to(requested(tid,tf),D2,P2)]]

IrRI4 Distributor-Participant Intergroup Interaction

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,

∀ D1: DISTRIBUTOR: cc, ∀ P1: PARTICIPANT: cc,

∀ GI: DISTRIBUTION, ∀ D2: DISTRIBUTOR: GI: DISTRIBUTION,

∀ P1: PARTICIPANT: GI: DISTRIBUTION,

[[state(
�

 , t1, input(D2)) |= comm_from_to(info, P2, D2)

 & intergroup_role_relation(D2, P1)]

⇒ ∃ t2 : T [t2 ��� �

 & state(
�

 ,t2,output(P1)) |= comm_from_to(info,P1,D1)]]

5.4 Transfer Requirements

Successful cooperation within a group requires that
communication takes place when needed. In particular this means
that the two cooperating roles within the open group instance
have to communicate successfully about requests, i.e., if a request
is communicated by a client to the receptionist, this request will
be received by the receptionist.

TR1 Client-Receptionist communication

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

 [state(
�

 , t1, output(C)) |= comm_from_to(requested(tid, tf), C, R)

⇒ ∃ t2 : T [t2 � � �

 & state(
�

 ,t2, input(R)) |= comm_from_to(requested(tid, tf), C, R)]]

Moreover, they also have to communicate about acceptance,
rejectance or finishing of tasks:

TR2 Client-Receptionist communication

∀ � : TRACES, ∀ tid : TaskId, ∀ t1: T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

 [state(
�

 , t1, output(R)) |= comm_from_to(info, R, C)

⇒ ∃ t2 : T [t2 � � �

 & state(
�

 ,t2, input(C)) |= comm_from_to(info, R, C)]]

Similarly within the distribution groups proper communication
has to take place about requests and what comes back for them:

TR3/TR5 Distributor-Participant communication

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,

∀ GI: DISTRIBUTION, ∀ D: DISTRIBUTOR: GI: DISTRIBUTION,

∀ P: PARTICIPANT: GI: DISTRIBUTION

 [state(
�

 , t1, output(D)) |= comm_from_to(requested(tid, tf), D, P)

⇒ ∃ t2 : T [t2 ��� �

 & state(
�

 ,t2, input(P)) |= comm_from_to(requested(tid, tf), D, P)]]

TR4/TR6 Distributor-Participant communication

∀ � : TRACES, ∀ tid : TaskId, ∀ t1: T,

∀ GI: DISTRIBUTION, ∀ D: DISTRIBUTOR: GI: DISTRIBUTION,

∀ P: PARTICIPANT: GI: DISTRIBUTION

 [state(
�

 , t1, output(P)) |= comm_from_to(info, P, D)

⇒ ∃ t2 : T [t2 ��� �

 & state(
�

 ,t2, input(D)) |= comm_from_to(info, P, D)]]

5.5 Single Role Behaviour Requirements

In this organisation model many of the roles just earn their money
communicating. But at least at some place in the organisation the
real work has to be done. This is performed by the participant
roles in the local banks. If they do not reject a task, they have to
finish it, as is expressed below:

PB1 Participant behaviour

∀ � : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,

∀ GI: DISTRIBUTION, ∀ D: DISTRIBUTOR: GI: DISTRIBUTION,

∀ P: PARTICIPANT: GI: DISTRIBUTION

 [state(
�

 , t1, input(P)) |= comm_from_to(requested(tid, tf), D, P)

⇒ ∃ t2 : T [t2 ��� �
�

 [state(
�

 , t2, output(P)) |= comm_from_to(rejected(tid), P, D)

 ∨ state(
�

 , t2, output(P)) |= comm_from_to(finished(tid), P, D)]]]

Client ParticipantDistributorParticipantReceptionist Distributor
TR1

TR6TR4TR2

TR5TR3

IrRI3

IrRI4

IrRI1

IrRI2

IaRI3IaRI2IaRI1

PB1

Figure 3 Overview of the non-global properties

6. DIAGNOSIS OF AN ORGANISATION
In this section it will be shown how the palette of requirements of
different types identified in Section 4 can be used to perform
diagnosis of the dynamics within an organisation. Before such a
diagnostic process can be started, first a logical analysis is made
of the relationships between global requirements and more local
requirements for the organisation (Section 6.1). Next a software
environment to check behavioural requirements against traces is
briefly discussed (Section 6.2). Finally, in Section 6.3 it is
discussed how the logical analysis and the checking software
environment can be used within a systematic diagnostic process.

6.1 Logical Relationships between the Requirements

Figure 3 shows possible logical relationships between different
types of requirements. For example, within the rightmost group
instance, the arrows for transfer requirement TR5 and role
behaviour requirement PB1 ’chain’ in an appropriate manner to
intragroup interation requirement IaRI3. Indeed, logically the latter
requirement can be derived from the former two. This obtains a
proof pattern

TR5 & PB1 ⇒ IaRI3

In a similar manner other proof patterns have been identified and
actually proven for the intragroup interaction requirements IaRI1
and IaRI2, making use of inter group interaction requirements,
transfer requirements, and (other) intragroup requirements:

TR3 & IrRI3 &

IaRI3 &

TR6 & IrRI4 ⇒ IaRI2

TR1 & IrRI1 &

IaRI2 &

TR4 & IrRI2 ⇒ IaRI1

Finally, the global requirement GR1 can be derived from IaRI1 and
TR2.

IaRI1 & TR2 ⇒ GR1

These proof patterns, depicted in Figure 4 as an AND-tree, can be
very useful in the analysis of malfunctioning of the organisation
in the following manner. For example, if for a given trace of the
organisation the global requirement GR1 is not satisfied, then by
the last proof pattern, by a refutation process it can be concluded
that either transfer does not function properly or IaRI1 does not
hold. If IaRI1 does not hold, then by one of the other proof
patterns either IaRI2 does not hold, or one of the intergroup
interaction requirements IrRI1 or IrRI2 does not hold, (or transfer
fails). If the intragroup requirement IaRI2 does not hold, then
either either IrRI3, IrRI4 or IaRI3 does not hold (or transfer fails).
Finally, if IaRI3 does not hold, then by the first proof pattern either
role behaviour requirement PB1 does not hold or transfer is not
properly functioning. By this refutation analysis it follows that if
GR1 does not hold for a given trace, then, skipping the
intermediate requirements, the cause of this malfunctioning can
be found in the set (the leaves of the tree in Figure 4):

{IrRI1, IrRI2, IrRI3, IrRI14} ∪ {PB1} ∪ {TR1, .., TR6}.

The logical analysis by itself does not pinpoint which one of these
leaves actually is refuted. However, it shows a set of candidates
that can be examined in more detail.

6.2 Checking the Temporal Trace Formulae

To check whether a given behavioural requirement is fulfilled in a
given trace or set of traces, a Prolog programme has been
developed. The temporal formulae are represented by nested term
structures based on the logical connectives. For example,
requirement GR1 from Section 4 is represented by

forall(M, T1, C:CLIENT, R:RECEPTIONIST, TID, TF,

 imp(holds(state(M, T1, output(C:CLIENT)),
 communication_from_to(requested(TID, TF),
 C:CLIENT, R:RECEPTIONIST), true),
 ex(T2 ��� ���
 or(holds(state(M, T2, input(C:CLIENT)),
 communication_from_to(finished(TID),
 R:RECEPTIONIST, C:CLIENT), true),

 holds(state(M, T2, input(C:CLIENT)),
 communication_from_to(rejected(TID),
 R:RECEPTIONIST, C:CLIENT), true)

))))

Traces are represented by sets of Prolog facts of the form

 holds(state(m1, t(2), input(role)), a)), true).

where m1 is the trace name, t(2) time point 2, and a is a state
formula in the ontology of the agent’s input. It is indicated that
state formula a is true in the role’s input state within the
organisation at time point 2. The Prolog programme for temporal
formula checking uses Prolog rules such as

 sat(and(F,G)) :- sat(F), sat(G).

that reduce the satisfaction of the temporal formula finally to the
satisfaction of atomic state formulae at certain time points, which
can be read from the trace.

Figure 4 AND-tree of requirements of different types

6.3 Diagnostic Method

Returning to the verification of the global organisation property
GR1, if the check shows that it is not satisfied, then subsequently,
the candidate set of causes {IrRI1, IrRI2, IrRI3, IrRI14} ∪ {PB1} ∪ {TR1,

.., TR6} generated from the logical analysis in Section 6.1 can be
checked. Due to the logical relationships given by the proof
patterns, at least one of them must be not satisfied. After having
them checked it will be found which one is the culprit. Since the
set only contains specific requirements which refer to local
situations within the organisation, this localises the problem. Thus

IaRI2 IrRI2 TR4 TR1 IrRI1

IaRI1 TR2

GR1

PB1 TR5

IaRI3 IrRI4 TR6 TR3 IrRI3

this approach provides a method of diagnosing malfunctioning in
an organisation. In a more efficient manner, based on the tree in
Figure 4 (obtained from the logical analysis resulting in the proof
patterns in Section 6.1), this method for diagnosis of
malfunctioning in an organisation runs as follows (according to a
specific diagnostic method, sometimes called hierarchical
classification):

1. First check the global properties

(the top of the tree in Figure 4)

2. Focus the subsequent checking process on only those more
local properties that in view of the logical analysis relate to a
global property that has turned out to be false

(the branches in the tree under a failed node)

3. Repeat this procedure with the focused local properties as
top-node

4. The most local properties that fail point at where the cause of
malfunctioning can be found

(one or more of the leaves of the tree)

Note that in step 2 all local properties that do not relate to a
failing global property can be left out of consideration, which may
obtain an advantage in the number of properties to be checked,
compared to simply checking all properties, of n over 2n (if the
property refinement graph would have the structure of a binary
tree with all branches of of depth n).

This method has been used to analyse the organisation simulation
model presented in Section 3. In the simulation software
environment log files containing the traces were automatically
created that were saved at a place where the checking software
environment can automatically read in the files and perform the
checking process. Thus an overall software environment was
created that is an adequate tool to diagnose the dynamics within
the organisation simulation model. In particular, the tool can be
used for debugging of the simulation model. Another type of
application is to analyse empirical data on the dynamics within a
real organisation. Because it is not easy to obtain such empirical
data about the dynamics, this application has not been performed
yet.

7. DISCUSSION
This paper contributes a framework to analyse the dynamics
within an organisation. One part of the framework is a temporal
trace language to formally specify behavioural requirements of
different types within the organisation. Between different
behavioural requirements specified in this language, logical
relationships can be identified. A second part is a software
environment to check behavioural requirements against a (set of)
trace(s). The framework was tested by linking it to an organisation
simulation model implemented in Swarm. Traces generated by the
simulation model were automatically checked by the checking
software. The interface between the two parts of the software is
defined on the basis of the log files created within the simulation
model of the states of the different parts of the organisation (i.e.,
input and output of the different role instances) over time. Since
this is a very general notion, the approach can easily be applied
using other simulation software. Another application is to use
empirical traces of a real organisation.

By a systematic use of the framework a diagnostic method can be
followed that is based on:

• a formal analysis of logical relationships between global
behavioural properties and local behavioural properties; i.e.,
a tree such as the one depicted in Figure 4, obtained from a
logical analysis of the requirements

• top down checking of behavioural requirements against
traces

This diagnostic method for a malfunctioning organisation first
checks the global properties, next focuses the subsequent
checking process on only these more local properties that in view
of the logical analysis relate to a global property that has turned
out false, and finally identifies the most local properties that fail;
they point at where the cause of malfunctioning can be found.

This method obtains its efficiency from the fact that all more
refined properties that (within the tree) are not a refinement of a
failing more global property can be left out of consideration.
Depending on the shape of the tree, and assuming that only one
failure arises (single fault hypothesis), this may obtain a linear
versus exponential advantage in the number of properties to be
checked, compared to simply checking all properties.

The experiments carried out so far have already shown the
advantage of the rapid prototyping in analysing processes at
various levels of abstraction [16]. It enables the designer to better
understand the dynamic impact of organisational rules,
organisational structures, and organisational patterns [20].
Having an abstract prototype at hand is of great help for
communication between designers. Also, new agent-oriented
modeling techniques can be tested before actually using them
within a given methodology [7].

Monitoring of the multi-agent system is currently done within the
environment of the simulated system. The next phase of our
project will include monitoring agents (exception handling
agents) for performing instrumentation, diagnosis and resolution
tasks [5], [14] on the line of socially-attentive monitoring of
failures in the social relationships between agents [13].

Future research will aim at building a library of different reusable
organisation models together with associated sets of behavioural
requirements at different organisational levels (and their logical
relationships).

REFERENCES

[1] Brazier, F. M. T., Jonker, C. M., Jungen, F. J., and Treur, J.,
Distributed Scheduling to Support a Call Centre: a Co-operative
Multi-Agent Approach. In: Applied Artificial Intelligence Journal,
vol. 13, 1999, pp. 65-90. H. S. Nwana and D. T. Ndumu (eds.),
Special Issue on Multi-Agent Systems.

[2] S. Bussmann, N.R. Jennings, and M. Wooldridge. On the
identification of agents in the design of production control systems.
In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented
Software Engineering, LNCS 1957. Springer-Verlag, 2001.

[3] Dardenne, A., Lamsweerde, A. van, and Fickas, S. (1993). Goal-
directed Requirements Acquisition. Science in Computer
Programming, vol. 20, pp. 3-50.

[4] Darimont, R., and Lamsweerde, A. van (1996). Formal Refinement
Patterns for Goal-Driven Requirements Elaboration. In: Proc. of
the Fourth ACM Symposium on the Foundation of Software
Engineering (FSE4), pp. 179-190.

[5] C. Dellarocas and M. Klein. An experimental evaluation of
domain-independent fault handling services in open multi-agent

systems. In: Proceedings of the 4th International Conference on
Multi-Agent Systems (ICMAS-2000), Boston, MA, 2000.

[6] C. Dellarocas and M. Klein. A knowledge-based approach for
handling exceptions in business processes. Information Technology
and Management , 1:155--169, 2000.

[7] R. Depke, R. Heckel, and J.M. Kuster. Formal agent-oriented
modeling with graph transformation. In: Science of Computer
Programming, 2001, to appear.

[8] Ferber, J. and Gutknecht, O. (1998). A meta-model for the analysis
and design of organisations in multi-agent systems. In: Proc. of the
Third International Conference on Multi-Agent Systems (ICMAS
’98) Proceedings. IEEE Computer Society, 1998

[9] Ferber, J. and Gutknecht, O. (1999). Operational Semantics of a
role-based agent architecture. Proceedings of the 6th Int. Workshop
on Agent Theories, Architectures and Languages. Lecture Notes in
AI, Springer-Verlag.

[10] Ferber, J., Gutknecht, O., Jonker, C.M., Mueller, J.P., and Treur, J.,
Organisation Models and Behavioural Requirements Specification
for Multi-Agent Systems (extended abstract). In: Proc. of the
Fourth International Conference on Multi-Agent Systems, ICMAS
2000. IEEE Computer Society Press, 2000. Extended version in:
Proc. of the ECAI 2000 Workshop on Modelling Artificial Societies
and Hybrid Organisations, 2000.

[11] Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E.
(1999). Specification of Behavioural Requirements within
Compositional Multi-Agent System Design. In: F.J. Garijo, M.
Boman (eds.), Multi-Agent System Engineering, Proc. of the 9th
European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, MAAMAW’99. Lecture Notes in AI, vol. 1647,
Springer Verlag, 1999, pp. 8-27.

[12] Jonker, C.M., and Treur, J., Compositional Verification of Multi-
Agent Systems: a Formal Analysis of Pro-activeness and
Reactiveness. In: W.P. de Roever, H. Langmaack, A. Pnueli (eds.),
Proceedings of the International Workshop on Compositionality,
COMPOS’97. Lecture Notes in Computer Science, vol. 1536,
Springer Verlag, 1998, pp. 350-380

[13] G.A. Kaminka and M. Tambe. Robust agent teams via socially-
atentive monitoring. In: Journal of Artificial Intelligence Research,
12:105--147, 2000.

[14] M. Klein and C. Dellarocas. Exception handling in agent systems.
In O. Etzioni, J. Muller, and J. Bradshaw, editors, In: Proceedings
of the 3rd International Conference on Autonomous Agents
(AA’99), pages 62--68, 1999.

[15] Kontonya, G., and Sommerville, I. (1998). Requirements
Engineering: Processes and Techniques. John Wiley and Sons,
New York.

[16] T. W. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G.
Wyner, J. Quimby, C. S. Osborn, A. Bernstein, G. Herman, M.
Klein, and E. O’Donnell. Tools for inventing organisations: Toward
a handbook for organizatinal processes. In: Management Science,
45:425-443, 2000.

[17] S. Miles, M. Joy, and M. Luck. Designing agent-oriented systems
by analysing agent interactions. In P. Ciancarini and M.
Wooldridge, editors, Agent-Oriented Software Engineering,
LNCS 1957. Springer-Verlag, 2001.

[18] M. Minar, R. Burkhart, C. Langton, and M. Askenazy. The Swarm
simulation system: A toolkit for building multi-agent simulations.
Technical report, Santa Fe Institute, 1996.
http://www.santafe.edu/projects/swarm/.

[19] M. Venkatraman and M.P. Singh. Verifying compliance with
commitments protocols: enabling open web-based multiagent
systems. In: Autonomous Agents and Multi-Agent Systems, 2:217--
236, 1999.

[20] F. Zambonelli, N.R. Jennings, and M. Wooldridge. Organisational
abstractions for the analysis and design of multi-agent systems. In:
P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software
Engineering, LNCS 1957. Springer-Verlag, 2001.

Appendix More details of Requirements Specifications

Relations used:

nr_of_requested: TRACES x T x T → N

nr_of_accepted: TRACES x T x T → N

nr_of_rejected: TRACES x T x T → N

nr_of_finished: TRACES x T x T → N

average_delay: TRACES x T x T → N

acc_of_delay: TRACES x T x T → N

Requested jobs

∀ � : TRACES, ∀ t1, t2, t3 : T

[t1 ≤ t2 ≤ t3

⇒ nr_of_requested(� , t1, t3) = nr_of_requested(� , t1, t2) +

 nr_of_requested(� , t2, t3)]

∀ � : TRACES, ∀ t : T: nr_of_requested(� , t, t) = 0

∀ � : TRACES, ∀ t : T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

[nr_of_requested(� , t, t+1) =

 1 if ∃ id : TaskId

 state(� , t, output(C)) |= comm_from_to(requested(id, t), C, R)

 0 otherwise]

Accepted jobs

∀ � : TRACES, ∀ t : T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

[nr_of_accepted(� , t, t+1) =

 1 if ∃ id : TaskId

 state(� , t, input(C)) |= comm_from_to(accepted(id, t), R, C)

 0 otherwise]

Rejected jobs

∀ � : TRACES, ∀ t : T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

[nr_of_rejected(� , t, t+1) =

 1 if ∃ id : TaskId

 state(� , t, input(C)) |= comm_from_to(rejected(id, t), R, C)

 0 otherwise]

Finished jobs

∀ � : TRACES, ∀ t : T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

[nr_of_finished(� , t, t+1) =

 1 if ∃ id : TaskId

 state(� , t, input(C)) |= comm_from_to(finished(id), R, C)

 0 otherwise]

Delayed jobs

∀ � : TRACES, ∀ id : TaskId, ∀ t, t1, t2 : T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

[[state(� , t1, input(C)) |= comm_from_to(accepted(id, t), R, C)

 & state(� , t2, input(C)) |= comm_from_to(finished(id), R, C)

 & t1 ≥ t2] ⇒ delay(id) = t2 - t]

Too soon jobs

∀ � : TRACES, ∀ id : TaskId, ∀ t, t1, t2 : T

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

[[state(� , t1, input(C)) |= comm_from_to(accepted(id, t), R, C)

 & state(� , t2, input(C)) |= comm_from_to(finished(id), R, C)

 & t2 ≥ t1]

⇒ tooSoon(id) = t – t2]

All jobs done

∀ � : TRACES, ∀ id : TaskId, ∀ t, t1 : T,

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group

 [state(� , t1, output(C)) |= comm_from_to(requested(id, t), R, C)

⇒ ∃ t2 : T [t2 > t1

 & state(� , t2, input(C)) |= comm_from_to(finished(id), R, C)]]

Accumulation of delay

∀ � : TRACES, ∀ t : T acc_of_delay(� , t, t) = 0

∀ � : TRACES, ∀ t1, t2, t3 : T [t1 ≤ t2 ≤ t3

⇒ acc_of_delay(� , t1, t3) = acc_of_delay(� , t1, t2) +

 acc_of_delay(� , t2, t3)]

version 2:

∀ � : TRACES, ∀ t : T acc_of_delay(� , t, t+1) = delay(� , S(� ,t))

where

S(� ,t) = { id : TaskId | ∃ C: CLIENT: open_group,

 ∃ R: RECEPTIONIST: open_group

 [state(� , t, input(C)) |= comm_from_to(finished(id), R, C)] }

∀ id : TaskId

[element_of(id, S(� , t))

⇒ ∃ C: CLIENT: open_group, ∃ R: RECEPTIONIST: open_group

 [state(� , t, input(C)) |= comm_from_to(finished(id), R, C)]]

∀ id : TaskId

[not element_of(id, S(� , t))

⇒ ∃ C: CLIENT: open_group, ∃ R: RECEPTIONIST: open_group

 [state(� , t, input(C)) |≠ comm_from_to(finished(id), R, C)]]

Let S be a variable over the sort of sets of job names.

∀ S delay(S) = Σ
id : S

 delay(id)

∀ S, ∀ id : TaskId delay(S ∪ {id}) = delay(S) + delay(id)

delay(∅) = 0

element_of(id', S∪{id}) if element_of(id', S) ∨ id' = id

Average delay

∀ � : TRACES, ∀ t1, t2 : T

[average_delay(� , t1, t2) =

 acc_of_delay(� , t1, t2) / nr_of_finished(� , t1, t2)

