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Abstract 

The main question addressed in this paper is how requirements on the 
dynamics of an organisation model can be specified and how the 
dynamics of such an organisation can be formally analysed. A 
specification language is proposed, and a number of different types of 
requirements for dynamics at different levels in the organisation are 
identified. Based on a logical analysis and a software environment to 
check requirements against traces of the dynamics, a diagnostic method is 
proposed to analyse the malfunctioning of an organisation, and pinpoint 
causes of malfunctioning. 

1.  INTRODUCTION 
Organisation modelling aims at abstracting from agents and their 
interaction within a complex multi-agent system using notions 
such as role, interaction and group structure (cf. [8], [9]). The 
notion of role, for example, is independent of any particular agent 
fulfilling this role. Role interactions define the relationships 
between roles. A group structure is a set of roles and interactions 
between them. The advantage of organisation modelling is to deal 
more adequately with complexity, in particular for multi-agent 
systems with nontrivial global behaviour. 

In recent years Requirements Engineering for distributed and 
agent systems has been studied in more depth, e.g., [3], [4], [11], 
[15]. At the level of the multi-agent system, requirements concern 
the dynamics of interaction and cooperation patterns. At the level 
of individual agents, requirements concern agent behaviour. Due 
to the dynamic complexity, specification and analysis of such 
requirements is a difficult process. The importance of using more 
abstract and intuitive notions in requirements specification, as 
opposed to more directly formulated behaviour constraints, is 
emphasised in, e.g., [3]. Below organisational concepts are used 
to serve this purpose. Because of their intuitive meaning and 
conciseness, such notions are easy to understand. 

For description of multi-agent systems from the organisational 
point of view, the agent/group/role model, adopted from [8] is 
used. An organisation is based on a definition of groups, roles and 
their relationships within the organisation. In relation to an 
organisation model four different types of requirements are 
distinguished (Section 2), varying from global requirements for 
the organisation as a whole, to requirements for specific roles and 
for  interactions between them. Section 3 briefly describes the 
example application used in the paper: a (simulated) organisation 
model for work flow related to a Call Center and a bank. In 
Section 4 a temporal trace language to formally specify 

behavioural requirements is briefly introduced. Using this 
language, in Section 5 a number of requirement specifications for 
the example organisation are presented.  

For all different types of requirements discussed in this paper, for 
a given set of finite traces representing dynamics within the 
organisation, the requirements can be verified automatically. By 
specifying the refinement of a global requirement for the overall 
organisation in terms of more local requirements, in Section 6 it is 
discussed how it is possible to perform diagnosis of 
malfunctioning of the organisation. If the overall requirement fails 
on a given trace, then subsequently, all refined requirements for 
the parts of the organisation can be verified against that trace: the 
cause of the malfunctioning can be attributed to the part(s) of the 
organisation for which the refined requirement(s) fail(s). This 
diagnostic method is applicable both to data on the dynamics of 
simulated organisations and empirical data on the dynamics of 
real organisations. Section 7 is a discussion. 

2. TYPES OF REQUIREMENTS  
Based on an organisational structure, the following types of 
requirements are distinguished: single role behaviour 
requirements, intragroup interaction requirements, intragroup 
communication successfulness requirements, intergroup 
interaction requirements. To be able to specify ongoing 
interaction between two roles for which multiple appearances 
exist, the notion of role instance is used. This notion abstracts 
from the agent realising the role as actor, but enables to 
distinguish between appearances of roles.  

For a given role within a group, role behaviour requirements 
specify the dynamics of the role within the group. They are 
typically expressed in terms of temporal relationships between the 
input and output of a role instance. Intragroup role interaction 
requirements specify the temporal constraints on the dynamics of 
the interaction protocol between two roles within a group. 
Intragroup role interaction requirements between two roles 
instances in one group instance are typically expressed in terms of 
the output of both role instances. Intragroup role interaction 
requires communication within the group. Therefore, in order to 
function properly, requirements are needed that communications 
are successful. These requirements relate output of one role 
instance to input of another role instance in the same group. 

Intergroup role interaction requirements specify the temporal 
constraints on the dynamics of the interaction protocol between 
two role instances within two different group instances. They are 



  

typically expressed in terms of the input of one of the role 
instances in one group instance and the output of the other role 
instance in the other group instance. 

3.  THE EXAMPLE ORGANISATION MODEL 
The example organisation model was inspired by the application 
addressed in [1]. The organisation consists of a Call Center 
together with a (large) number of local banks. For simulating this 
organisation and visualizing the experiments Swarm1, an agent-
based simulator [18], was used. A basic agent model has been 
developed with the core functionality required for the 
organisation; see Figure 1 for an overview. This agent model has 
then been specialized in a bank employee (BE agent), a bank 
distributor (BD agent) and the Call Center distributor (CD agent). 
The organisational structure of the bank and call center is 
hierarchical with communication between Call Center Distributor 
(CD) and bank distributors (BDi) and between bank distributors 
(BDi) and bank employees (BEij). 

 

 

 

 

 

 

 

 

Figure 1   Call Center distributor (CD), bank distributors (BDi) and 
bank employees (BEij). 

 
In the experiments each local bank had nine employees. The tasks 
come from the Clients to the Call Center Distributor. The Call 
Center Distributor allocates the tasks for the three banks 
according to its policy and the three queues below are the ones 
sent to the Bank Distributors. The same procedure is repeated by 
the Bank Distributor for the Bank Employees that have to process 
the tasks.  

 

 

Figure 2 Task probe 

 

A task within this organisation (shown as UTask in Figure 2) has 
an identifier (taskId), number of time units needed for its 
processing (taskUnits) and a relative time (relTime) specifying the 
time moment when the task has been promised to be processed. 
We can vary the policy used by distributors in the allocation of 
tasks for their subordinates. The availability of employees can 
also be varied with some degree of absenteeism. The distributors 
                                                                 
1 Swarm home page http://www.santafe.edu/projects/swarm/ 

can all use the same policy for scheduling the tasks to their 
subordinates or can use different policies. The kind of exceptions 
that can be currently injected in the dynamics of the organisation 
are: (i) agent unavailable, (ii) task misrouted, and (iii) task 
delayed [6]. Currently the communication of tasks can be logged 
in both directions, to subordinates and to superiors. When the 
employees finish processing a task, they communicate it at the 
end of that particular time interval to their superior and from there 
it is communicated to the center distributor, also at the end of the 
same time interval. There is no time lag between accepting a task 
and its being sent to the bank which should process it, and 
similarly for acknowledging its finish back to the center 
distributor. 

For tracing the communication of tasks between the Call Center 
Distributor and the Bank Distributors we have log files for the 
input and output of each of the role instances. These log files are 
used to generate the traces that are analysed by the checking 
software. 

By testing for various situations, the designer of the multi-agent 
system can thoroughly check the requirements for interactions 
[17], actually see how well the organisation is able to manage 
exceptions that can occur during the enactment of a process [6], 
and uncover agents that do not comply with coordination 
protocols [19]. Unreliable coordination between agents and the 
effect of various decisionmaking policies on the behavior of the 
organisation as a whole is done by creating specific circumstances 
(e.g., exceptions) and observing behavior of the organisation 
under these circumstances. The tools presented in this paper 
provide support for such an analysis. 

4.  A TEMPORAL TRACE LANGUAGE 
To specify requirements on the dynamics within the organisation, 
the temporal trace language used in [11], [12] is adopted. An 
ontology is a specification (in order-sorted logic) of a 
vocabulary, i.e., a signature. A state for ontology Ont is an 
assignment of truth values {true, false} to the set of ground atoms 
At(Ont). The set of all possible states for ontology Ont is denoted 
by STATES(Ont). The standard satisfaction relation |= between 
states and state properties is used: S |= p means that property p 
holds in state S. To describe behaviour, explicit reference is 
made to time in a formal manner.  

A fixed time frame T is assumed which is linearly ordered. 
Depending on the application, it may be dense (e.g., the real 
numbers), or discrete (e.g., the set of integers or natural numbers 
or a finite initial segment of the natural numbers), or any other 
form, as long as it has a linear ordering.  

A  trace  �  over an ontology  Ont  and time frame T  is a mapping 
� : T → STATES(Ont), i.e, a sequence of states �

 t (t ∈ T) in  
STATES(Ont). The set of all traces over ontology Ont is denoted by 

TRACES(Ont) , i.e., TRACES(Ont) = STATES(Ont)T. 

Comparable to the approach in situation calculus, the sorted 
predicate logic temporal trace language TTL  is built on atoms 
referring to, e.g., traces, time and state properties, such as  
state(

� , t, output) |= p. Here |= is a predicate symbol in the 
language, comparable to the Holds-predicate in situation calculus. 
Temporal formulae are built using the usual logical connectives 
and quantification (for example, over traces, time and state 
properties). The set TFOR(Ont) is the set of all temporal formulae 
that only make use of ontology Ont. We allow additional language 

BD2 BD0 

BD1 

CD 

BE00 BE01 BE20 BE21 

BE10 BE11 



  

elements as abbreviations of formulae of the temporal trace 
language.  

States of a trace can be related to state properties via the formally 
defined satisfaction relation |= between states and formulae. If  ϕ 
∈ SPROP(InOnt), then state(

�
, t, input) |= ϕ denotes that ϕ is true in 

the state of �   at time point t. 

Ontologies can be specific for a role. In Section 5, for simplicity 
explicit reference to the specific ontologies per role are omitted; 
the ontology elements used can be read from the requirements 
themselves. 

5.  EXAMPLE REQUIREMENTS 
In this section behavioural requirements related to the example 
are fomalised using the temporal trace language introduced in 
Section 4. Within these requirements specifications universal and 
existential quantification over role instances can occur. Role 
instances are denoted by I:R where R is a role. To be able to 
specify requirements for the example organisation, first the 
following terms are introduced. The organisation model used for 
the bank and Call Center consists of two groups: DISTRIBUTION, 
OPEN_GROUP. For the group OPEN_GROUP only one instance 
exists, open_group, standing for the Call Center. For the group 
DISTRIBUTION the following instances exist, cc, lb1, …, lbn, standing 
for the cooperation between Call Center and local bank managers 
(cc), and for each of the local banks and their employees (lbi). 
Within the group DISTRIBUTION two roles exist: DISTRIBUTOR, 
PARTICIPANT. For these roles the following instances are 
distinguished: d: cc (distributor role instance within group 
instance cc), pcc1, …, pccn : cc (n participant role instances within 
group instance cc), d: lb1 (distributor role instance within group 
instance lb1), …, d: lbn, p11: lb1 (first participant role instance of 
group instance lb1), …, p1m: lb1 (m-th participant role instance of 
group instance lbn), …, pn1: lbn, …, pnm: lbn. Within the group 
OPEN_GROUP, the following roles exist: RECEPTIONIST, CLIENT.  
Finally, the following role instances are distinguished: cl: 

open_group (client role instance within group instance open_group), 
and rec: open_group (receptionist role instance within group 
instance open_group). 

Variable introduction at the beginning of a formula is done as ∀ V: 

S, or ∃ V: S, where S is the sort of the variable, and V is the 
variable name. Introducing several variables of the same sort can 
be done like: ∀ V1, V2, …, Vn: S. Variables used in the article are: 

• GI: GROUP is a variable ranging over all possible group 
instances of group GROUP. Examples: GI: DISTRIBUTION, GI: 

OPEN_GROUP. 

• RI: ROLE: gi  is a variable ranging over all possible role 
instances of role ROLE within group instance gi. Examples: P: 

PARTICIPANT: cc, P: PARTICIPANT: GI: DISTRIBUTION. 

• t: T is a variable ranging over time. 

• �  : TRACES is a variable ranging over traces. 

• id : TaskId is a variable ranging over task identifiers. 

When used within a formula, with the exception of the 
introduction of the variable, only the variable name of the variable 
is used. Example:   

 ∀ �  : TRACES, ∀ t : T nr_of_finished(
�

 , t, t) = 0  

It is assumed that job names are unique. One job is presented to 
the organisation at a time. 

The requirements are specified below in a form that is specific for 
the application. However, it is not difficult to reuse them over 
different applications of the same type of organisation. 

5.1  Global Requirements 

At the level of the organisation as a whole the following 
requirements can be identified 

GR1. Every request is answered (either by rejecting or by 
accepting and finishing it) 

GR2. No accepted jobs are lost: for every accepted job there is a 
time that that job is finished. 

GR3. The ratio of accepted jobs over requested jobs is at least r. 

GR4. The average delay of jobs is at most m. 

These global requirements can be formalised as follows. The first 
requirement specifies that at any point in time, if a client 
communicates a request to the receptionist, then at some later 
time point the receptionist will communicate either a rejection of 
the request or a notification that it was finished to that client. 

GR1  All requests answered 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T, 

∀ C: CLIENT:open_group, ∀ R: RECEPTIONIST: open_group  

 [  state(
�

 , t1, output(C)) |= comm_from_to(requested(tid, tf), C, R) 

⇒ ∃ t2 : T  [ t2 ��� �  

 & [ state(
�

 , t2, input(C)) |= comm_from_to(rejected(tid), R, C)   

  ∨ state(
�

 , t2, input(C)) |= comm_from_to(finished(tid), R, C) ]  ] 

The next requirement expresses that if at any point in time the 
receptionist communicates to a client that a request was accepted, 
then at some later time point the receptionist communicates to the 
same client that the task was finished. 

GR2   No lost jobs 

∀ �  : TRACES, ∀ id : TaskId, ∀ t, t1 : T,  

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

[  state(
�

 , t1, input(C)) |= comm_from_to(accepted(id, t), R, C) 

⇒ ∃ t2 : T  [ t2 > t1 

 & state(
�

 , t2, input(C)) |= comm_from_to(finished(id), R, C) ]  ] 

For the next two requirements additional specifications are 
needed to define the frequency functions used. For shortness’ sake 
these are left out; see, however, the Appendix. The first one, G3,  
can be viewed as a liveness property: it indicates that at least a 
certain amount of ’good events’ in the sense of request 
acceptances must happen. 

GR3  Acceptable ratio of accepted jobs over [t1, t2] 

∀ �  : TRACES 

 nr_of_ accepted(
�

 , t1, t2)  /  nr_of_ requested(
�

 , t1, t2)   ≥ r  

requirement G4 below can be viewed as a safety requirement: it 
indicates that only limited ’bad events’ in the sense of delays can 
happen. 

GR4  Acceptable average delay of accepted jobs over [t1, t2] 

∀ �  : TRACES  average_delay(
�

 , t1, t2)  ≤  m  
 



  

In the next four subsections the different requirements on parts of 
the organisation are identified. In Figure 3 below an overview can 
be found. In this figure three group instances are depicted, 
together with two role instances in each of them. Requirements of 
different types are depicted by arrows. The position from which 
an arrow starts indicates the role instance to which the if-part of 
the requirement refers. Whether the if-part refers to input or 
output is indicated by the start position of the arrow (resp. at the 
left hand side of the role instance or at the right hand side). In a 
similar manner the end point of an arrow indicates to which role 
instance the then-part of the requirement refers. The requirements 
distinghuished in Figure 3 and specified in detail below are 
selected in order to be able to derive global requirement GR1 
from them. In Section 6.1 this will be addressed in more detail. 

5.2  Intragroup Role Interaction Requirements 

Intragroup role interaction requirements specify the cooperation 
within a group. Within each group instance at least one intragroup 
role Interaction requirements is specified. The first one specifies 
that within the open group proper interaction takes place: if a 
client communicates a request, then some time later, either the 
request will be rejected, or finished. 

IaRI1 Client-Receptionist Intragroup Interaction 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,  

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

[  state(
�

 , t1, output(C)) |= comm_from_to(requested(tid, tf), C, R) 

⇒ ∃ t2 : T  [ t2 � � �
�

  

 [  state(
�

 , t2, output(R)) |= comm_from_to(rejected(tid), R, C)  

 ∨  state(
�

 , t2, output(R)) |= comm_from_to(finished(tid), R, C) ] ] ] 

The next requirement expresses that within the distribution groups 
proper interaction takes place: if a request is communicated to a 
participant (by a distributor), then the participant will respond 
(eventually) by rejecting it or having it finished. 

IaRI2/IaRI3 Distributor-Participant Intragroup Interaction 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T, ∀ GI: DISTRIBUTION,  

∀ D: DISTRIBUTOR: GI: DISTRIBUTION,  

∀ P: PARTICIPANT: GI: DISTRIBUTION 

[  state(
�

 , t1, output(D)) |= comm_from_to(requested(tid,tf), D, P) 

⇒ ∃ t2 : T [ t2 � � �
�

 

 [ state(
�

 , t2, output(P)) |= comm_from_to(rejected(tid), P, D)  

 ∨ state(
�

 , t2, output(P)) |= comm_from_to(finished(tid), P, D) ] ] ] 

5.3  Intergroup Role Interaction Requirements 

Intergroup role interaction requirements specify connectivity 
between the groups. This is achieved by an association between a 
role instance of one group and a role instance in another group, 
specified by the relation intergroup_role_relation(R, D). The first 
intergroup role interaction requirement specifies that an 
intergroup role relation between role instances of RECEPTIONIST 
and DISTRIBUTOR in open_group and cc exists, and, in particular 
that every request received by the role instance of RECEPTIONIST 
within open_group leads to a similar request of the role instance 
DISTRIBUTOR within cc. 

IrRI1 Receptionist-Distributor Intergroup Interaction 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T, 

∀ R: RECEPTIONIST: open_group, ∀ C: CLIENT: open_group, 

∀ D: DISTRIBUTOR: cc, ∀ P: PARTICIPANT: cc 

 [  [ intergroup_role_relation(R, D) 

 & state(
�

 , t1, input(R)) |= comm_from_to(requested(tid, tf), C, R) ] 

⇒ ∃ t2 : T  [ t2 � � �  

 & state(
�

 , t2, output(D)) |= comm_from_to(requested(tid, tf), D, P) ] ] 

The next intergroup role interaction requirement specifies that 
also the return path from group instance cc to group instance 
open_group is guaranteed. This is achieved by an intergroup role 
relation from the distributor instance to the receptionist instance. 
The explanation of this requirement is as follows. If within the 
distribution group instance cc the distributor role instance gets 
information communicated by a participant, then within the open 
group instance the related receptionist role instance will 
communicate this information to the client. In this requirement 
(and other requirements) info ranges over { finished(tid), rejected(tid), 

accepted(tid) }. 

IrRI2 Distributor-Receptionist Intergroup Interaction 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T,  

∀ D: DISTRIBUTOR: cc, ∀ P: PARTICIPANT: cc, 

∀ R: RECEPTIONIST: open_group, ∀ C: CLIENT: open_group 

[  [   state(
�

 , t1, input(D)) |= comm_from_to(info, P, D) 

 & intergroup_role_relation(D, R) ] 

⇒ ∃ t2 : T  

 [   t2 � � �
���
� � � ��� �

 , t2, output(R)) |= comm_from_to(info, R, C) ]  ] 

Similarly intergroup relations between the local bank group 
instances and the distributor group instance cc are specified: 

IrRI3  Participant-Distributor Intergroup Interaction 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T, 

∀ D1: DISTRIBUTOR: cc, ∀ P1: PARTICIPANT: cc, 

∀ GI: DISTRIBUTION, ∀ D2: DISTRIBUTOR: GI: DISTRIBUTION,  

∀ P1: PARTICIPANT: GI: DISTRIBUTION,  

[  [ state(
�

 , t1, input(P1)) |= comm_from_to(requested(tid, tf), D1, P1)  

 & intergroup_role_relation(P1, D2) ] 

⇒ ∃ t2 : T [  t2 ��� �  

 &  state(
�

 ,t2,output(D2)) |= comm_from_to(requested(tid,tf),D2,P2)  ]  ] 

 

IrRI4  Distributor-Participant Intergroup Interaction 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T, 

∀ D1: DISTRIBUTOR: cc, ∀ P1: PARTICIPANT: cc, 

∀ GI: DISTRIBUTION, ∀ D2: DISTRIBUTOR: GI: DISTRIBUTION,  

∀ P1: PARTICIPANT: GI: DISTRIBUTION,  

[  [ state(
�

 , t1, input(D2)) |= comm_from_to(info, P2, D2)  

 & intergroup_role_relation(D2, P1) ] 

⇒ ∃ t2 : T [  t2 ��� �  

 & state(
�

 ,t2,output(P1)) |= comm_from_to(info,P1,D1) ]  ] 



  

5.4  Transfer Requirements 

Successful cooperation within a group requires that 
communication takes place when needed. In particular this means 
that the two cooperating roles within the open group instance 
have to communicate successfully about requests, i.e., if a request 
is communicated by a client to the receptionist, this request will 
be received by the receptionist. 

TR1 Client-Receptionist communication 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T, 

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

 [   state(
�

 , t1, output(C)) |= comm_from_to(requested(tid, tf), C, R)  

⇒ ∃ t2 : T [ t2 � � �  

 & state(
�

 ,t2, input(R)) |= comm_from_to(requested(tid, tf), C, R)  ]  ] 

Moreover, they also have to communicate about acceptance, 
rejectance or finishing of tasks: 

TR2  Client-Receptionist communication 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1: T, 

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

 [   state(
�

 , t1, output(R)) |= comm_from_to(info, R, C)  

⇒ ∃ t2 : T [  t2 � � �  

 & state(
�

 ,t2, input(C)) |= comm_from_to(info, R, C) ]  ] 

     

Similarly within the distribution groups proper communication 
has to take place about requests and what comes back for them: 

TR3/TR5  Distributor-Participant communication 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T, 

∀ GI: DISTRIBUTION, ∀ D: DISTRIBUTOR: GI: DISTRIBUTION,  

∀ P: PARTICIPANT: GI: DISTRIBUTION 

 [   state(
�

 , t1, output(D)) |= comm_from_to(requested(tid, tf), D, P)  

⇒ ∃ t2 : T [  t2 ��� �  

 & state(
�

 ,t2, input(P)) |= comm_from_to(requested(tid, tf), D, P) ]  ] 

TR4/TR6 Distributor-Participant communication 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1: T, 

∀ GI: DISTRIBUTION, ∀ D: DISTRIBUTOR: GI: DISTRIBUTION,  

∀ P: PARTICIPANT: GI: DISTRIBUTION 

 [   state(
�

 , t1, output(P)) |= comm_from_to(info, P, D)  

⇒ ∃ t2 : T [  t2 ��� �  

 & state(
�

 ,t2, input(D)) |= comm_from_to(info, P, D) ]  ] 

5.5  Single Role Behaviour Requirements 

In this organisation model many of the roles just earn their money 
communicating. But at least at some place in the organisation the 
real work has to be done. This is performed by the participant 
roles in the local banks. If they do not reject a task, they have to 
finish it, as is expressed below: 

PB1  Participant behaviour 

∀ �  : TRACES, ∀ tid : TaskId, ∀ t1, tf : T, 

∀ GI: DISTRIBUTION, ∀ D: DISTRIBUTOR: GI: DISTRIBUTION,  

∀ P: PARTICIPANT: GI: DISTRIBUTION 

 [   state(
�

 , t1, input(P)) |= comm_from_to(requested(tid, tf), D, P)  

⇒ ∃ t2 : T  [ t2 ��� �
�

  

 [ state(
�

 , t2, output(P)) |= comm_from_to(rejected(tid), P, D)  

 ∨ state(
�

 , t2, output(P)) |= comm_from_to(finished(tid), P, D) ] ] ] 

 

Client ParticipantDistributorParticipantReceptionist Distributor
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Figure 3  Overview of the non-global properties

  



  

6.  DIAGNOSIS OF AN ORGANISATION 
In this section it will be shown how the palette of requirements of 
different types identified in Section 4 can be used to perform 
diagnosis of the dynamics within an organisation. Before such a 
diagnostic process can be started, first a logical analysis is made 
of the relationships between global requirements and more local 
requirements for the organisation (Section 6.1). Next a software 
environment to check behavioural requirements against traces is 
briefly discussed (Section 6.2). Finally, in Section 6.3 it is 
discussed how the logical analysis and the checking software 
environment can be used within a systematic diagnostic process. 

6.1  Logical Relationships between the Requirements 

Figure 3  shows possible logical relationships between different 
types of requirements. For example, within the rightmost group 
instance, the arrows for transfer requirement TR5 and role 
behaviour requirement PB1 ’chain’ in an appropriate manner to 
intragroup interation requirement IaRI3. Indeed, logically the latter 
requirement can be derived from the former two. This obtains a 
proof pattern 

TR5 & PB1  ⇒  IaRI3 

In a similar manner other proof patterns have been identified and 
actually proven for the intragroup interaction requirements IaRI1 
and IaRI2, making use of inter group interaction requirements, 
transfer requirements, and (other) intragroup requirements:  

TR3 & IrRI3 & 

IaRI3 & 

TR6 & IrRI4     ⇒  IaRI2 

TR1 & IrRI1 & 

IaRI2 & 

TR4 & IrRI2     ⇒  IaRI1 

Finally, the global requirement GR1 can be derived from IaRI1 and 
TR2. 

IaRI1 & TR2  ⇒  GR1 

These proof patterns, depicted in Figure 4 as an AND-tree, can be 
very useful in the analysis of malfunctioning of the organisation 
in the following manner. For example, if for a given trace of the 
organisation the global requirement GR1 is not satisfied, then by 
the last proof pattern, by a refutation process it can be concluded 
that either transfer does not function properly or IaRI1 does not 
hold. If IaRI1 does not hold, then by one of the other proof 
patterns either IaRI2 does not hold, or one of the intergroup 
interaction requirements IrRI1 or IrRI2 does not hold, (or transfer 
fails). If the intragroup requirement IaRI2 does not hold, then 
either either IrRI3, IrRI4 or IaRI3 does not hold (or transfer fails). 
Finally, if IaRI3 does not hold, then by the first proof pattern either 
role behaviour requirement PB1 does not hold or transfer is not 
properly functioning. By this refutation analysis it follows that if 
GR1 does not hold for a given trace, then, skipping the 
intermediate requirements, the cause of this malfunctioning can 
be found in the set (the leaves of the tree in Figure 4): 

{IrRI1, IrRI2, IrRI3, IrRI14} ∪ {PB1} ∪ {TR1, .., TR6}.  

The logical analysis by itself does not pinpoint which one of these 
leaves actually is refuted. However, it shows a set of candidates 
that can be examined in more detail.   

6.2  Checking the Temporal Trace Formulae 

To check whether a given behavioural requirement is fulfilled in a 
given trace or set of traces, a Prolog programme has been 
developed. The temporal formulae are represented by nested term 
structures based on the logical connectives. For example, 
requirement GR1  from Section 4 is represented by 

forall(M, T1, C:CLIENT, R:RECEPTIONIST, TID, TF, 

    imp(holds(state(M, T1, output(C:CLIENT)),           
                              communication_from_to(requested(TID, TF),  
                                                      C:CLIENT, R:RECEPTIONIST), true), 
        ex(T2 ��� ���  
               or(holds(state(M, T2, input(C:CLIENT)),  
                                    communication_from_to(finished(TID),  
                                                      R:RECEPTIONIST, C:CLIENT), true), 

 holds(state(M, T2, input(C:CLIENT)),                
                communication_from_to(rejected(TID),  
                                   R:RECEPTIONIST, C:CLIENT), true) 

   ) ) ) ) 

Traces are represented by sets of Prolog facts of the form 

    holds(state(m1, t(2), input(role)), a)), true). 
 
where m1 is the trace name, t(2) time point 2, and a is a state 
formula in the ontology of the agent’s input. It is indicated that 
state formula a is true in the role’s input state within the 
organisation at time point 2. The Prolog programme for temporal 
formula checking uses Prolog rules such as 

    sat(and(F,G)) :- sat(F), sat(G). 

that reduce the satisfaction of the temporal formula finally to the 
satisfaction of atomic state formulae at certain time points, which 
can be read from the trace. 

 

 

 

 

 

 

 

 

 

 
Figure 4  AND-tree of requirements of different types 

6.3  Diagnostic Method 

Returning to the verification of the global organisation property 
GR1, if the check shows that it is not satisfied, then subsequently, 
the candidate set of causes {IrRI1, IrRI2, IrRI3, IrRI14} ∪ {PB1} ∪ {TR1, 

.., TR6} generated from the logical analysis in Section 6.1 can be 
checked. Due to the logical relationships given by the proof 
patterns, at least one of them must be not satisfied. After having 
them checked it will be found which one is the culprit. Since the 
set only contains specific requirements which refer to local 
situations within the organisation, this localises the problem. Thus 

IaRI2 IrRI2 TR4 TR1 IrRI1 

IaRI1 TR2 

GR1 

PB1 TR5 

IaRI3 IrRI4 TR6 TR3 IrRI3 



  

this approach provides a method of diagnosing malfunctioning in 
an organisation. In a more efficient manner, based on the tree in 
Figure 4 (obtained from the logical analysis resulting in the proof 
patterns in Section 6.1), this method for diagnosis of 
malfunctioning in an organisation runs as follows (according to a 
specific diagnostic method, sometimes called hierarchical 
classification): 

1. First check the global properties 

(the top of the tree in Figure 4) 

2. Focus the subsequent checking process on only those more 
local properties that in view of the logical analysis relate to a 
global property that has turned out to be false 

(the branches in the tree under a failed node) 

3. Repeat this procedure with the focused local properties as 
top-node 

4. The most local properties that fail point at where the cause of 
malfunctioning can be found 

(one or more of the leaves of the tree) 

Note that in step 2 all local properties that do not relate to a 
failing global property can be left out of consideration, which may 
obtain an advantage in the number of properties to be checked, 
compared to simply checking all properties, of n over 2n (if the 
property refinement graph would have the structure of a binary 
tree with all branches of of depth n).  

This method has been used to analyse the organisation simulation 
model presented in Section 3. In the simulation software 
environment log files containing the traces were automatically 
created that were saved at a place where the checking software 
environment can automatically read in the files and perform the 
checking process. Thus an overall software environment was 
created that is an adequate tool to diagnose the dynamics within 
the organisation simulation model. In particular, the tool can be 
used for debugging of the simulation model. Another type of 
application is to analyse empirical data on the dynamics within a 
real organisation. Because it is not easy to obtain such empirical 
data about the dynamics, this application has not been performed 
yet. 

7.  DISCUSSION 
This paper contributes a framework to analyse the dynamics 
within an organisation. One part of the framework is a temporal 
trace language to formally specify behavioural requirements of 
different types within the organisation. Between different 
behavioural requirements specified in this language, logical 
relationships can be identified. A second part is a software 
environment to check behavioural requirements against a (set of) 
trace(s). The framework was tested by linking it to an organisation 
simulation model implemented in Swarm. Traces generated by the 
simulation model were automatically checked by the checking 
software. The interface between the two parts of the software is 
defined on the basis of the log files created within the simulation 
model of the states of the different parts of the organisation (i.e., 
input and output of the different role instances) over time. Since 
this is a very general notion, the approach can easily be applied 
using other simulation software. Another application is to use 
empirical traces of a real organisation. 

By a systematic use of the framework a diagnostic method can be 
followed that is based on: 

• a formal analysis of logical relationships between global 
behavioural properties and local behavioural properties; i.e., 
a tree such as the one depicted in Figure 4, obtained from a 
logical analysis of the requirements 

• top down checking of behavioural requirements against 
traces 

This diagnostic method for a malfunctioning organisation first 
checks the global properties, next focuses the subsequent 
checking process on only these more local properties that in view 
of the logical analysis relate to a global property that has turned 
out false, and finally identifies the most local properties that fail; 
they point at where the cause of malfunctioning can be found. 

This method obtains its efficiency from the fact that all more 
refined properties that (within the tree) are not a refinement of a 
failing more global property can be left out of consideration. 
Depending on the shape of the tree, and assuming that only one 
failure arises (single fault hypothesis), this may obtain a linear 
versus exponential advantage in the number of properties to be 
checked, compared to simply checking all properties.  

The experiments carried out so far have already shown the 
advantage of the rapid prototyping in analysing processes at 
various levels of abstraction [16]. It enables the designer to better 
understand the dynamic impact of organisational rules, 
organisational structures, and organisational  patterns [20]. 
Having an abstract prototype at hand is of great help for 
communication between designers. Also, new agent-oriented 
modeling techniques can be tested before actually using them 
within a given methodology [7]. 

Monitoring of the multi-agent system is currently done within the 
environment of the simulated system. The next phase of our 
project will include monitoring agents (exception handling 
agents) for performing instrumentation, diagnosis and resolution 
tasks [5], [14] on the line of socially-attentive monitoring of 
failures in the social relationships between agents [13]. 

Future research will aim at building a library of different reusable 
organisation models together with associated sets of behavioural 
requirements at different organisational levels (and their logical 
relationships). 
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Appendix  More details of Requirements Specifications 
 

Relations used: 

nr_of_requested:   TRACES x T x T → N 

nr_of_accepted:    TRACES x T x T → N 

nr_of_rejected:    TRACES x T x T → N 

nr_of_finished:    TRACES x T x T → N 

average_delay:    TRACES x T x T → N 

acc_of_delay:    TRACES x T x T → N 

Requested  jobs 

∀ �  : TRACES, ∀ t1, t2, t3 : T 

[ t1 ≤ t2 ≤ t3 

⇒ nr_of_requested(�  , t1, t3) =   nr_of_requested( �  , t1, t2) + 

     nr_of_requested( �  , t2, t3)  ] 

∀ �  : TRACES, ∀ t : T:    nr_of_requested( �  , t, t) = 0 

∀ �  : TRACES, ∀ t : T,  

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

[ nr_of_requested(�  , t, t+1) =  

 1 if ∃ id : TaskId  

  state( �  , t, output(C)) |= comm_from_to(requested(id, t), C, R) 

 0 otherwise ] 

Accepted jobs 

∀ �  : TRACES, ∀ t : T, 

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

[ nr_of_accepted( �  , t, t+1) =  

 1  if ∃ id : TaskId  

  state( �  , t, input(C)) |= comm_from_to(accepted(id, t), R, C) 

 0 otherwise ] 

Rejected jobs 

∀ �  : TRACES, ∀ t : T, 

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

[ nr_of_rejected( �  , t, t+1) =  

 1  if ∃ id : TaskId  

  state( �  , t, input(C)) |= comm_from_to(rejected(id, t), R, C) 

 0 otherwise ] 

Finished jobs 

∀ �  : TRACES, ∀ t : T, 

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

[ nr_of_finished( �  , t, t+1) =  

 1  if ∃ id : TaskId  

  state( �  , t, input(C)) |= comm_from_to(finished(id), R, C) 

 0 otherwise ] 

Delayed jobs 

∀ �  : TRACES, ∀ id : TaskId, ∀ t, t1, t2 : T, 

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

[  [ state( �  , t1, input(C)) |= comm_from_to(accepted(id, t), R, C) 

 & state( �  , t2, input(C)) |= comm_from_to(finished(id), R, C) 

 & t1 ≥ t2  ]       ⇒ delay(id) = t2 - t ] 

Too soon jobs 

∀ �  : TRACES, ∀ id : TaskId, ∀ t, t1, t2 : T 

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

[  [ state( �  , t1, input(C)) |= comm_from_to(accepted(id, t), R, C) 

 & state( �  , t2, input(C)) |= comm_from_to(finished(id), R, C) 

 & t2 ≥ t1  ] 

⇒ tooSoon(id) = t – t2 ] 

All jobs done 

∀ �  : TRACES, ∀ id : TaskId, ∀ t, t1 : T, 

∀ C: CLIENT: open_group, ∀ R: RECEPTIONIST: open_group 

 [  state( �  , t1, output(C)) |= comm_from_to(requested(id, t), R, C) 

⇒ ∃ t2 : T  [  t2 > t1 

 & state( �  , t2, input(C)) |= comm_from_to(finished(id), R, C) ]  ] 

Accumulation of delay 

∀ �  : TRACES, ∀ t : T    acc_of_delay( �  , t, t) = 0 

 

∀ �  : TRACES, ∀ t1, t2, t3 : T    [ t1 ≤ t2 ≤ t3 

⇒ acc_of_delay( �  , t1, t3) =  acc_of_delay( �  , t1, t2) + 

     acc_of_delay( �  , t2, t3)  ] 

version 2: 

∀ �  : TRACES, ∀ t : T    acc_of_delay( �  , t, t+1)  = delay(�  , S(�  ,t)) 

where 

S(�  ,t) = { id : TaskId | ∃ C: CLIENT: open_group,  

   ∃ R: RECEPTIONIST: open_group  

  [ state(�  , t, input(C)) |= comm_from_to(finished(id), R, C)  ]  } 

∀ id : TaskId 

[  element_of(id, S(�  , t)) 

⇒ ∃ C: CLIENT: open_group, ∃ R: RECEPTIONIST: open_group  

 [ state(�  , t, input(C)) |= comm_from_to(finished(id), R, C)  ] ] 

∀ id : TaskId 

[  not element_of(id, S(�  , t)) 

⇒ ∃ C: CLIENT: open_group, ∃ R: RECEPTIONIST: open_group 

 [ state( �  , t, input(C)) |≠ comm_from_to(finished(id), R, C)  ] ] 

Let S be a variable over the sort of sets of job names. 

∀ S  delay(S) = Σ
id : S

 delay(id) 

∀ S, ∀ id : TaskId  delay(S ∪ {id}) = delay(S) + delay(id) 

delay( ∅ ) = 0  

element_of(id', S∪{id}) if element_of(id', S) ∨ id' = id 

Average delay 

∀ �  : TRACES, ∀ t1, t2 : T     

[  average_delay( �  , t1, t2)  = 

 acc_of_delay( �  , t1, t2) / nr_of_finished( �  , t1, t2)  


